Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.892
Filter
1.
Bioorg Med Chem ; 104: 117698, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38552597

ABSTRACT

Serotonin reuptake inhibition combined with the action targeting 5-hydroxytryptamine receptor subtypes can serve as a potential target for the development of antidepressant drugs. Herein a series of new aralkyl piperazines and piperidines were designed and synthesized by the structural modifications of the previously discovered aralkyl piperidine compound 1, targeting SSRI/5-HT1A/5-HT7. The results exhibited that compound 5a showed strong binding to 5-HT1A and 5-HT7 (Ki of 0.46 nM, 2.7 nM, respectively) and a high level of serotonin reuptake inhibition (IC50 of 1.9 nM), all of which were significantly elevated compared to 1. In particular, compound 5a showed weaker inhibitory activity against hERG than 1, and demonstrated good stability in liver microsomes in vitro. The preliminary screening using FST indicated that orally administered 5a, at a high dose, could reduce immobility time in mice markedly, indicating potential antidepressant activity.


Subject(s)
Selective Serotonin Reuptake Inhibitors , Serotonin , Mice , Animals , Piperazine/pharmacology , Serotonin/metabolism , Selective Serotonin Reuptake Inhibitors/pharmacology , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Piperidines/pharmacology , Piperazines/chemistry , Receptor, Serotonin, 5-HT1A
2.
Bioorg Med Chem ; 103: 117682, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38493729

ABSTRACT

Zika virus (ZIKV) disease has been given attention due to the risk of congenital microcephaly and neurodevelopmental disorders after ZIKV infection in pregnancy, but no vaccine or antiviral drug is available. Based on a previously reported ZIKV inhibitor ZK22, a series of novel 1-aryl-4-arylmethylpiperazine derivatives was designed, synthesized, and investigated for antiviral activity by quantify cellular ZIKV RNA amount using RT-qPCR method in ZIKV-infected human venous endothelial cells (HUVECs) assay. Structure-activity relationship (SAR) analysis demonstrated that anti-ZIKV activity of 1-aryl-4-arylmethylpiperazine derivatives is not correlated with molecular hydrophobicity, multiple new derivatives with pyridine group to replace the benzonitrile moiety of ZK22 showed stronger antiviral activity, higher ligand lipophilicity efficiency as well as lower cytotoxicity. Two active compounds 13 and 33 were further identified as novel ZIKV entry inhibitors with the potential of oral available. Moreover, both ZK22 and newly active derivatives also possess of obvious inhibition on the viral replication of coronavirus and influenza A virus at low micromolar level. In summary, this work provided better candidates of ZIKV inhibitor for preclinical study and revealed the promise of 1-aryl-4-arylmethylpiperazine chemotype in the development of broad-spectrum antiviral agents.


Subject(s)
Zika Virus Infection , Zika Virus , Female , Humans , Pregnancy , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Endothelial Cells , Virus Replication , Zika Virus Infection/drug therapy , Piperazines/chemistry , Piperazines/pharmacology
3.
Drug Discov Ther ; 17(6): 428-433, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38044120

ABSTRACT

Olaparib is a small-molecule inhibitor of poly(ADP)-ribose polymerase (PARP) used as maintenance therapy for recurrent ovarian cancer and newly diagnosed advanced ovarian cancer after initial chemotherapy. An exposure-toxicity correlation has been reported between the probability of anemia, a common adverse event associated with olaparib, and the steady-state minimum plasma concentration (Cmin) as well as the predicted maximum plasma concentration (Cmax). On the other hand, olaparib exhibits high interpatient variability with regard to the area under the concentration-time curve, Cmax, and Cmin. Therefore, we developed a simple and sensitive assay based on high-performance liquid chromatography with ultraviolet light (HPLC-UV) for the therapeutic drug monitoring of olaparib. The analysis was performed on an octadecylsilyl column with a mobile phase consisting of 0.5% KH2PO4 (pH 4.5) and acetonitrile (71:29, v/v), at a flow rate of 0.8 mL/min. Olaparib and an internal standard (imatinib) were well separated from the co-extracted material, with retention times of 13.6 and 11.5 min, respectively. The calibration curve for olaparib showed linearity over the concentration range of 0.10-10.0 µg/mL (r2 = 0.9998). The intra- and inter- day validation coefficients ranged from 1.79 to 4.13% and 1.37 to 3.55%, respectively. Measurement accuracy ranged from - 6.07 to 3.26%, with a recovery rate of more than 91.06%. The developed method was then applied to evaluate the plasma olaparib concentrations in patients with ovarian cancer. Our findings demonstrate that HPLC-UV is an economical, simple, and sensitive method for clinical application and holds promise for the effective drug monitoring of olaparib during ovarian cancer treatment.


Subject(s)
Ovarian Neoplasms , Phthalazines , Poly(ADP-ribose) Polymerase Inhibitors , Humans , Female , Chromatography, High Pressure Liquid/methods , Poly(ADP-ribose) Polymerase Inhibitors/adverse effects , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/chemically induced , Piperazines/adverse effects , Piperazines/chemistry
4.
Chembiochem ; 25(6): e202300770, 2024 03 15.
Article in English | MEDLINE | ID: mdl-38116907

ABSTRACT

Epidithiodioxopiperazine (ETP) alkaloids, featuring a 2,5-diketopiperazine core and transannular disulfide bridge, exhibit a broad spectrum of biological activities. However, the structural complexity has prevented efficient chemical synthesis and further clinical research. In the past few decades, many achievements have been made in the biosynthesis of ETPs. Here, we discuss the biosynthetic progress and summarize them as two comprehensible metabolic principles for better understanding the complex pathways of α, α'- and α, ß'-disulfide bridged ETPs. Specifically, we systematically outline the catalytic machineries to install α, α'- and α, ß'-disulfide by flavin-containing oxygenases. This concept would contribute to the medical and industrial applications of ETPs.


Subject(s)
Disulfides , Piperazines , Disulfides/chemistry , Piperazines/chemistry
5.
Int J Mol Sci ; 24(14)2023 Jul 22.
Article in English | MEDLINE | ID: mdl-37511552

ABSTRACT

Piperazine is one of the most frequently found scaffolds in small-molecule FDA-approved drugs. In this study, a general approach to the synthesis of piperazines bearing substituents at carbon and nitrogen atoms utilizing primary amines and nitrosoalkenes as synthons was developed. The method relies on sequential double Michael addition of nitrosoalkenes to amines to give bis(oximinoalkyl)amines, followed by stereoselective catalytic reductive cyclization of the oxime groups. The method that we developed allows a straightforward structural modification of bioactive molecules (e.g., α-amino acids) by the conversion of a primary amino group into a piperazine ring.


Subject(s)
Amines , Piperazines , Piperazine , Cyclization , Piperazines/chemistry , Amines/chemistry , Amino Acids
6.
Molecules ; 28(10)2023 May 22.
Article in English | MEDLINE | ID: mdl-37241965

ABSTRACT

Fenebrutinib is an orally available Bruton tyrosine kinase inhibitor. It is currently in multiple phase III clinical trials for the management of B-cell tumors and autoimmune disorders. Elementary in-silico studies were first performed to predict susceptible sites of metabolism and structural alerts for toxicities by StarDrop WhichP450™ module and DEREK software; respectively. Fenebrutinib metabolites and adducts were characterized in-vitro in rat liver microsomes (RLM) using MS3 method in Ion Trap LC-MS/MS. Formation of reactive and unstable intermediates was explored using potassium cyanide (KCN), glutathione (GSH) and methoxylamine as trapping nucleophiles to capture the transient and unstable iminium, 6-iminopyridin-3(6H)-one and aldehyde intermediates, respectively, to generate a stable adducts that can be investigated and analyzed using mass spectrometry. Ten phase I metabolites, four cyanide adducts, five GSH adducts and six methoxylamine adducts of fenebrutinib were identified. The proposed metabolic reactions involved in formation of these metabolites are hydroxylation, oxidation of primary alcohol to aldehyde, n-oxidation, and n-dealkylation. The mechanism of reactive intermediate formation of fenebrutinib can provide a justification of the cause of its adverse effects. Formation of iminium, iminoquinone and aldehyde intermediates of fenebrutinib was characterized. N-dealkylation followed by hydroxylation of the piperazine ring is proposed to cause the bioactivation to iminium intermediates captured by cyanide. Oxidation of the hydroxymethyl group on the pyridine moiety is proposed to cause the generation of reactive aldehyde intermediates captures by methoxylamine. N-dealkylation and hydroxylation of the pyridine ring is proposed to cause formation of iminoquinone reactive intermediates captured by glutathione. FBB and several phase I metabolites are bioactivated to fifteen reactive intermediates which might be the cause of adverse effects. In the future, drug discovery experiments utilizing this information could be performed, permitting the synthesis of new drugs with better safety profile. Overall, in silico software and in vitro metabolic incubation experiments were able to characterize the FBB metabolites and reactive intermediates using the multistep fragmentation capability of ion trap mass spectrometry.


Subject(s)
Piperazines , Tandem Mass Spectrometry , Rats , Animals , Chromatography, Liquid , Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods , Piperazines/chemistry , Pyridones/analysis , Glutathione/metabolism , Cyanides/analysis , Aldehydes/analysis , Microsomes, Liver/metabolism
7.
Chem Biodivers ; 20(4): e202201087, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36919620

ABSTRACT

Endophytic fungi possess a versatile metabolism which is related to their ability to live in diverse ecological niches. While culturing under laboratory conditions, their metabolism is mainly influenced by the culture media, time of incubation and other physicochemical factors. In this study, we focused on the production of 3 thiodiketopiperazines (TDKPs) botryosulfuranols A-C produced by an endophytic strain of Cophinforma mamane isolated from the leaves of Bixa orellana L collected in the Peruvian Amazon. We studied the time-course production of botryosulfuranols A-C during 28 days and evaluated the variations in the production of secondary metabolites, including the TDKPs, produced by C. mamane in response to different culture media, light versus dark conditions and different incubation times. We observed a short time-frame production of botryosulfuranol C while its production was significantly affected by the light conditions and nutrients of the culture media. Botryosulfuranols A and B showed a similar production pattern and a similar response to culturing conditions. Molecular networking allowed us to detect three compounds related to TDKPs that will be the focus of future experiments.


Subject(s)
Ascomycota , Endophytes , Piperazines , Ascomycota/chemistry , Bixaceae/microbiology , Endophytes/metabolism , Fungi/metabolism , Piperazines/chemistry
8.
Mol Divers ; 27(4): 1843-1851, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36070160

ABSTRACT

This study deals with the synthesis of the regioselective and facile domino one-pot four-component reaction of 2-chloroquinoline-3-carbaldehydes, 1, 3-cyclodione compounds (as cyclic active methylene), ethyl acetoacetate (as ß-keto ester), and hydrazine hydrate in the presence of DABCO as a homogeneous organocatalyst yielding a novel series of 4H-pyrano[2, 3-b]quinolones. This multicomponent reaction has some advantages; the significant one is C-O bond formation under metal-free conditions. Other benefits include simple procedure, mild and green condition, high yield, easy purification, and excellent regioselectivity. All polycyclic products (7a-k, 11 new compounds) were characterized by IR, 1H NMR, 13C NMR, and mass spectra.


Subject(s)
Piperazines , Quinolines , Piperazines/chemistry
9.
Eur J Med Chem ; 245(Pt 1): 114906, 2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36395647

ABSTRACT

We have already reported the modification on the piperazine and phenyl rings of JNJ4796, a small-molecule fuse inhibitor targeting hemagglutinin (HA). In this study, we described the structure-activity relationship of the benzoxazole and tetrazole rings of JNJ4796. Many derivatives demonstrated good in vitro activity against IAV H1N1and Oseltamivir-resistant IAV H1N1 stains. Although compounds (R)-1e and (R)-1h exhibited excellent in vitro activity, high drug exposure level and low hERG inhibition, they displayed low oral efficacy. Excitedly, (R)-1a, a representative identified in our previous study, was found to show potent in vivo anti-IAV activity with the survival rates of 100%, 100% and 70% at 15, 5 and 1.67 mg/kg, respectively, comparable to JNJ4796. Currently, we are exploring different ways to ease its gastrointestinal response.


Subject(s)
Antiviral Agents , Benzoxazoles , Influenza A Virus, H1N1 Subtype , Piperazines , Tetrazoles , Benzoxazoles/chemistry , Benzoxazoles/pharmacology , Influenza A Virus, H1N1 Subtype/drug effects , Piperazines/chemistry , Piperazines/pharmacology , Tetrazoles/chemistry , Tetrazoles/pharmacology , Structure-Activity Relationship , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Humans
10.
Eur J Med Chem ; 245(Pt 1): 114903, 2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36375336

ABSTRACT

Farnesoid X receptor (FXR) is an attractive target for drug discovery against non-alcoholic fatty liver disease (NAFLD). We previously reported an orally active, new-chemotype FXR agonist XJ034 by ensemble learning-driven drug discovery. However, its FXR agonistic activity and the efficacy in vivo remain to be improved. In this study, we designed and synthesized 52 derivatives, and preliminarily evaluated their FXR transactivation activity in HEK293T cells at the concentration of 10 µM. 12 FXR agonists were superior or comparable to compound XJ034, two of which showed over 9-fold activity of compound XJ034, and were as potent as OCA. The molecular docking and molecular dynamics simulations implied an additional hydrogen bond with TYR383 is involved in FXR transactivation for both compounds. According to EC50 determined by the confirmatory transactivation assay, we selected adamantan-1-yl(4-(2-amino-5-chlorophenyl)piperazin-1-yl)methanone (10a, EC50: 1.05 µM) as our lead compound. Interestingly, compound 10a had no agonistic effect on TGR5 or PPAR, and no cytotoxicity to HepG2 cells. In vivo bioassays with high-fat-diet induced C57BL/6J obese (DIO) mice have shown that compound 10a (100 mg/kg) is more effective than compound XJ034 (200 mg/kg) in improving hyperlipidemia, hepatic steatosis and insulin resistance. We also observed that compound 10a down-regulated the expression of genes involved in liver inflammation in vivo, implying its potential to treat hepatic inflammation. In summary, the present data have proved that our strategy for structural optimization is effective, and compound 10a is a promising lead compound with improved efficacy for NAFLD.


Subject(s)
Non-alcoholic Fatty Liver Disease , Piperazines , Receptors, Cytoplasmic and Nuclear , Animals , Humans , Mice , HEK293 Cells , Inflammation/metabolism , Liver/drug effects , Liver/metabolism , Mice, Inbred C57BL , Molecular Docking Simulation , Non-alcoholic Fatty Liver Disease/metabolism , Receptors, Cytoplasmic and Nuclear/agonists , Piperazines/chemistry , Piperazines/pharmacology
11.
Chem Biol Drug Des ; 100(5): 722-729, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36050829

ABSTRACT

Histamine is involved in several central nervous system processes including cognition. In the last years, H3 receptor (H3 R) antagonists have been widely explored for their potential on dementias and other cognitive dysfunctions, and the cooperative role between histamine and acetylcholine neurotransmissions on cognitive processes is widely known in literature. This motivated us to assess the potential of 1-[(2,3-dihydrobenzofuran-1-yl)methyl]piperazines (LINS01 compounds) as inhibitors of cholinesterases, and thus this work presents the inhibitory effect of such compounds against acetyl (AChE) and butyrylcholinesterase. A set of 16 selected compounds were evaluated, being compounds 2d and 2e the most potent inhibitors of both cholinesterases (IC50 13.2-33.9 µM) by competitive mechanism, as indicated by the kinetic assays. Molecular docking simulations suggested that the allylpiperazine and dihydrobenzofuran motifs present in these compounds are important to perform π-interactions with key tryptophan residues from the enzymes, increasing their affinity for both H3 R and cholinesterases. Metric analysis support that compound 2d (LINS01022) should be highlighted due to its balanced lipophilicity (ClogP 2.35) and efficiency (LE 0.32) as AChE inhibitor. The results add important information to future design of dual H3 R-cholinesterases ligands.


Subject(s)
Alzheimer Disease , Receptors, Histamine H3 , Acetylcholine , Acetylcholinesterase/metabolism , Benzofurans/chemistry , Benzofurans/pharmacology , Butyrylcholinesterase/chemistry , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/pharmacology , Histamine , Histamine Antagonists/pharmacology , Humans , Ligands , Molecular Docking Simulation , Piperazines/chemistry , Piperazines/pharmacology , Receptors, Histamine H3/chemistry , Structure-Activity Relationship , Tryptophan
12.
Molecules ; 27(15)2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35897953

ABSTRACT

Piperazine-based dithiocarbamates serve as important scaffolds for numerous pharmacologically active drugs. The current study investigates the design and synthesis of a series of dithiocarbamates with a piperazine unit as well as their biological activities. Under ultrasound conditions, the corresponding piperazine-1-carbodithioates 5a-5j were synthesized from monosubstituted piperazine 2 and N-phenylacetamides 4a-4j in the presence of sodium acetate and carbon disulfide in methanol. The structures of the newly synthesized piperazines were confirmed, and their anti-lung carcinoma effects were evaluated. A cytotoxic assay was performed to assess the hemolytic and thrombolytic potential of the synthesized piperazines 5a-5j. The types of substituents on the aryl ring were found to affect the anticancer activity of piperazines 5a-5j. Piperazines containing 2-chlorophenyl (5b; cell viability = 25.11 ± 2.49) and 2,4-dimethylphenyl (5i; cell viability = 25.31 ± 3.62) moieties demonstrated the most potent antiproliferative activity. On the other hand, piperazines containing 3,4-dichlorophenyl (5d; 0.1%) and 3,4-dimethylphenyl (5j; 0.1%) rings demonstrated the least cytotoxicity. The piperazine with the 2,5-dimethoxyphenyl moiety (5h; 60.2%) showed the best thrombolytic effect. To determine the mode of binding, in silico modeling of the most potent piperazine (i.e., 5b) was performed, and the results were in accordance with those of antiproliferation. It exhibits a similar binding affinity to PQ10 and an efficient conformational alignment with the lipophilic site of PDE10A conserved for PQ10A.


Subject(s)
Antineoplastic Agents , Piperazines , Antineoplastic Agents/chemistry , Cell Survival , Computer Simulation , Piperazine/pharmacology , Piperazines/chemistry , Structure-Activity Relationship
13.
J Org Chem ; 87(15): 10422-10429, 2022 08 05.
Article in English | MEDLINE | ID: mdl-35819223

ABSTRACT

DABCO-promoted cyclization reaction of substituted 2-amino-4H-chromen-4-ones with substituted 2,6-dibenzylidenecyclohexan-1-ones was investigated under mild conditions. This reaction provided a novel and efficient access to the 7,8,9,10-tetrahydro-12H-chromeno[2,3-b]quinolin-12-ones in good yields, the exocyclic double bond of which is predominantly E-selective.


Subject(s)
Quinolines , Cyclization , Piperazines/chemistry , Quinolines/chemistry
14.
J Mass Spectrom ; 57(7): e4871, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35739062

ABSTRACT

Lurasidone is an antipsychotic drug clinically used for the treatment of schizophrenia and bipolar disorder. During a mechanism-based forced degradation study of lurasidone, two novel degradation products were observed under free radical-mediated oxidative (via AIBN) and solution photolytic conditions. The structures of the two novel degradants were identified through an approach combining HPLC, LC-MSn (n = 1, 2), preparative HPLC purification and NMR spectroscopy. The degradant formed under the free radical-mediated condition is an oxidative degradant with half of the piperazine ring cleaved to form two formamides; a mechanism is proposed for the formation of the novel N,N'-diformyl degradant, which should be readily applicable to other drugs that contain a piperazine moiety that is widely present in drug molecules. The degradant observed under the solution photolytic condition is identified as the photo-induced isomer of lurasidone with the benzisothiazole ring altered into a benzothiazole ring.


Subject(s)
Lurasidone Hydrochloride , Tandem Mass Spectrometry , Chromatography, High Pressure Liquid/methods , Chromatography, Liquid/methods , Drug Stability , Free Radicals , Magnetic Resonance Spectroscopy/methods , Oxidative Stress , Piperazines/chemistry , Tandem Mass Spectrometry/methods
15.
Molecules ; 27(12)2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35744824

ABSTRACT

A new N,N'-disubstituted piperazine conjugated with 1,3,4-thiadiazole and 1,2,4-triazole was prepared and the chemical structures were identified by IR, NMR and elemental analysis. All the prepared compounds were tested for their antimicrobial activity. The antimicrobial results indicated that the tested compounds showed significant antibacterial activity against gram-negative strains, especially E. coli, relative to gram-positive bacteria. Docking analysis was performed to support the biological results; binding modes with the active site of enoyl reductase amino acids from E. coli showed very good scores, ranging from -6.1090 to -9.6184 kcal/mol. Correlation analysis was performed for the inhibition zone (nm) and the docking score.


Subject(s)
Anti-Infective Agents , Escherichia coli , Anti-Bacterial Agents/chemistry , Anti-Infective Agents/chemistry , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Microbial Sensitivity Tests , Molecular Docking Simulation , Oxidoreductases , Piperazines/chemistry , Thiadiazoles
16.
Molecules ; 27(11)2022 May 25.
Article in English | MEDLINE | ID: mdl-35684357

ABSTRACT

We report a short synthetic route for synthesizing 2,3-substituted piperazine acetic acid esters. Optically pure amino acids were efficiently converted into 1,2-diamines that could be utilized to deliver the title 2,3-substituted piperazines in five steps with a high enantiomeric purity. The novel route facilitated, for the first time, the synthesis of 3-phenyl substituted-2-piperazine acetic acid esters that were difficult to achieve using other methods; however, in this case, the products underwent racemization.


Subject(s)
Diamines , Piperazines , Acetic Acid , Esters/chemistry , Piperazine , Piperazines/chemistry , Stereoisomerism
17.
Arch Pharm (Weinheim) ; 355(8): e2200082, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35500130

ABSTRACT

A series of novel piperazine urea derivatives with thiadiazole moieties were designed, synthesized, and investigated for their inhibition potential against human fatty acid amide hydrolase (hFAAH). The urea derivatives possessing p-chlorophenylthiadiazole and benzylpiperazine fragments (19-22) were effective inhibitors of hFAAH. Notably, compounds with 4-chlorobenzyl (19) and 4-fluorobenzyl (20) tails at the piperazine side were identified as the most active inhibitors with IC50 values of 0.13 and 0.22 µM, respectively. The preincubation test of 19 was in agreement with the irreversible binding mechanism. Molecular docking was performed to explore the potential binding interactions with key amino acid residues at the FAAH active site. These newly identified inhibitors could serve as leads for the further development of potent and selective FAAH inhibitors for FAAH-associated diseases.


Subject(s)
Thiadiazoles , Urea , Amidohydrolases , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Humans , Molecular Docking Simulation , Piperazines/chemistry , Piperazines/pharmacology , Structure-Activity Relationship , Thiadiazoles/pharmacology , Urea/pharmacology
18.
Angew Chem Int Ed Engl ; 61(28): e202200983, 2022 07 11.
Article in English | MEDLINE | ID: mdl-35486370

ABSTRACT

Understanding how mutations render a drug ineffective is a problem of immense relevance. Often the mechanism through which mutations cause drug resistance can be explained purely through thermodynamics. However, the more perplexing situation is when two proteins have the same drug binding affinities but different residence times. In this work, we demonstrate how all-atom molecular dynamics simulations using recent developments grounded in statistical mechanics can provide a detailed mechanistic rationale for such variances. We discover dissociation mechanisms for the anti-cancer drug Imatinib (Gleevec) against wild-type and the N368S mutant of Abl kinase. We show how this point mutation triggers far-reaching changes in the protein's flexibility and leads to a different, much faster, drug dissociation pathway. We believe that this work marks an efficient and scalable approach to obtain mechanistic insight into resistance mutations in biomolecular receptors that are hard to explain using a structural perspective.


Subject(s)
Benzamides , Piperazines , Drug Resistance, Neoplasm/genetics , Fusion Proteins, bcr-abl/metabolism , Imatinib Mesylate/pharmacology , Mutation , Piperazines/chemistry , Protein Kinase Inhibitors/pharmacology , Pyrimidines/chemistry
19.
Eur J Med Chem ; 235: 114319, 2022 May 05.
Article in English | MEDLINE | ID: mdl-35367707

ABSTRACT

The 5-HT1A receptors are an important biological target in the treatment of CNS diseases. Recently, their importance in the context of non-CNS disease entities has also been postulated. In the light of these reports, we designed a new group of urea derivatives of N-aryl-N'-aryl-/(thio)ureido-/sulfamoylamino-derivatives of alkyl/alkylcarbamoyl piperazines as 5-HT1AR ligands, focusing on increasing receptor selectivity. We made structural modifications in three areas of the molecule. In the course of our research, we obtained a ligand with reduced basicity (6f), which, despite the loss of the protonable nitrogen atom, did not lose its affinity for the 5-HT1AR (Ki = 35 nM) with a simultaneous increase in selectivity. In particular, a decrease in affinity for D2R (Ki = 1940 nM) was observed, which was analyzed using molecular modeling methods, including FMO and molecular dynamics. Basic ADME-Tox parameters were characterized for 6f, confirming its potential applicability in pharmacotherapy.


Subject(s)
Piperazines , Receptors, Serotonin , Ligands , Piperazines/chemistry , Piperazines/pharmacology , Receptor, Serotonin, 5-HT1A , Serotonin , Structure-Activity Relationship
20.
Mar Drugs ; 20(3)2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35323485

ABSTRACT

The biological screening of 44 marine sponge extracts for the research of bioactive molecules, with potential application in the treatment of age-related diseases (cancer and Alzheimer's disease) and skin aging, resulted in the selection of Scopalina hapalia extract for chemical study. As no reports of secondary metabolites of S. hapalia were found in the literature, we undertook this research to further extend current knowledge of Scopalina chemistry. The investigation of this species led to the discovery of four new compounds: two butenolides sinularone J (1) and sinularone K (2), one phospholipid 1-O-octadecyl-2-pentanoyl-sn-glycero-3-phosphocholine (3) and one lysophospholipid 1-O-(3-methoxy-tetradecanoyl)-sn-glycero-3-phosphocholine (4) alongside with known lysophospholipids (5 and 6), alkylglycerols (7-10), epidioxysterols (11 and 12) and diketopiperazines (13 and 14). The structure elucidation of the new metabolites (1-4) was determined by detailed spectroscopic analysis, including 1D and 2D NMR as well as mass spectrometry. Molecular networking was also explored to complement classical investigation and unravel the chemical classes within this species. GNPS analysis provided further information on potential metabolites with additional bioactive natural compounds predicted.


Subject(s)
4-Butyrolactone/analogs & derivatives , Biological Products , Phospholipids , Piperazines , Porifera/chemistry , 4-Butyrolactone/chemistry , 4-Butyrolactone/isolation & purification , Animals , Bays , Biological Products/chemistry , Biological Products/isolation & purification , Comoros , Magnetic Resonance Spectroscopy , Molecular Structure , Phospholipids/chemistry , Phospholipids/isolation & purification , Piperazines/chemistry , Piperazines/isolation & purification , Porifera/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...